
A Disrete Probabilisti Memory Model forDisovering Dependenies in TimeSepp Hohreiter and Mihael C. MozerDepartment of Computer SieneUniversity of ColoradoBoulder, CO 80309{0430fhohreit,mozerg�s.olorado.eduAbstrat. Many domains of mahine learning involve disovering de-pendenies and struture over time. In the most omplex of domains,long-term temporal dependenies are present. Neural network modelssuh as lstm have been developed to deal with long-term dependenies,but the ontinuous nature of neural networks is not well suited to dis-rete symbol proessing tasks. Further, the mathematial underpinningsof neural networks are unlear, and gradient desent learning of reurrentneural networks seems partiularly suseptible to loal optima. We intro-due a novel arhiteture for disovering dependenies in time. The arhi-teture is formed by ombining two variants of a hidden Markov model(hmm)|the fatorial hmm and the input-output hmm|and adding afurther strong onstraint that requires the model to behave as a lath-and-store memory (the same onstraint exploited in lstm). This model,alled an miofhmm, an learn struture that other variants of the hmmannot, and an generalize better than lstm on test sequenes that havedi�erent statistial properties (di�erent lengths, di�erent types of noise)than training sequenes. However, the miofhmm is slower to train and ismore suseptible to loal optima than lstm.1 IntrodutionMany domains of mahine learning involve disovering dependenies and stru-ture over time. Example domains inlude speeh reognition, proess ontrol,and time series predition. In the most omplex of domains, long-term temporaldependenies are present. A long-term dependeny is one in whih the observa-tion at time tu, o(tu), and the observation at some time in the future, o(tv), aredependent, where tv � tu, and there is no time tw, tu < tw < tv, suh thatthe dependeny between the o(tu) and o(tv) an be desribed in terms of thedependeny between o(tu) and o(tw) plus the dependeny between o(tw) ando(tv). To apture the struture present in the temporal sequene, it is thereforeneessary to onstrut a memory holding information about o(tu) during thetime intervening between the observations.Hidden Markov Models (hmms) and Reurrent Neural Networks (rnns) arenatural andidates to enode long-term dependenies. However, theoretial and



empirial work argues that learning these dependenies is diÆult; for rnns, see[13, 6, 11, 10, 9℄, and for hmms, see [4, 3℄. A onstrained form of the rnn arhi-teture, alled lstm, has been proposed to learn long-term dependenies usingstandard learning proedures suh as gradient desent [12℄. lstm sueeds be-ause it imposes an indutive bias via hidden units with �xed linear self-reurrentonnetions of strength 1.0. These units behave as memory ells, responding tolearned inputs, and then remaining ative inde�nitely.lstm has three weaknesses. First, lstm was designed to address many tasksthat are intrinsially disrete|they involve lassifying sequenes of input sym-bols. A neural network with ontinuous ativation levels does not seem wellsuited to a disrete domain. Seond, gradient-desent learning is slow and inthe ase of rnns is partiularly prone to enountering loal optima. Third, themathematial underpinnings of neural networks are shaky; for example, the se-mantis of \ativation levels" are ill de�ned. None of these weaknesses are foundin hmms: hmms are well suited for disrete inputs and outputs, they use EMproedures for training instead of gradient desent, the hmm has a probabilistiinterpretation.In this paper, we take the indutive bias provided by the lstm model andinorporate it into a hmm, with the goal of obtaining the bene�ts of eah. Ratherthan abandoning neural networks for the inreasingly popular graphial models,we believe it valuable to exploit the indutive biases disovered by the rnn om-munity in the design of onstrained variations of hmms. The onstraint suggestedby lstm involves a �xed state transition probability matrix that implements alath-and-hold memory.2 A Disrete Probabilisti Memory ModelA standard hmm generates output sequenes. To handle temporally-varying in-put as well as temporally-varying output, we use an extension known as aninput-output hmm [5℄, in whih the state at t, s(t) is onditionally dependenton the previous state, s(t � 1), as well as the urrent input, x(t), and the out-put, y(t), is onditionally dependent on s(t) and x(t). Further, we allow for astate with ompositional struture using a fatorial hmm [7, 8℄. The partiularsort of ompositional state we explore in our model is one onsisting multiplenon-resettable ip-ops|memory elements whih an be triggered by partiularinputs and will remain unhanged in time thereafter; this same sort of lath isthe heart of lstm. Thus, our model is an memory-based input-output fatorialHMM, whih we shorten to miofhmm.Consider fatorizing the state into H omponents, denoted s1 : : : sH , eahof whih we wish to behave as a lath-and-hold memory. Eah omponent isa multinomial random variable with N values. Initially, all omponents havevalue U for \unommitted"; various inputs an trigger the omponent to takeon values 2; : : : ;N. The onstraint on the miofhmm is to �x the state transitionfuntion, p(si(t) = ajs1(t � 1) = b1; : : : ; sH(t � 1) = bH ; x(t) = ), to Æa;bi ifbi 6= U, where Æ is the Kroneker delta. One omponent si takes on values



2 : : :N, the omponent an not hange its value|it behaves as a memory forthe ourrene of an input event. Thus, it has N � 1 memory states.The restrition on the state transition funtion that allows eah omponentto store its value inde�nitely should have signi�ant bene�ts in learning: the �xedtransition probabilities prevent the transition matrix from beoming irreduible,and hene the limitations on learning temporal dependenies disussed in [4℄ arenot appliable. Eah omponent is further restrited in that it annot be resetto U or any other value, and therefore annot be re-used. However, we skirt thislimitation by allowing multiple omponents that an be used to store di�erentfaets of the input sequene.2.1 Training the MIOFHMMTraining data for the miofhmm onsists of a set of input and output sequenepairs. The goal of training is to determine model parameters|disrete ondi-tional probability distributions|that maximize the likelihood of the trainingoutput sequenes given the orresponding training input sequenes.We train the miofhmm using the Baum-Welh algorithm [2, 1℄. The om-plexity of the miofhmm training proedure is exponential in the number ofmemory omponents. Ignoring the memory onstraint, the omplexity of theBaum-Welsh algorithm for the miofhmm is O �T N2H�, where T is the sequenelength. However, exploiting the memory onstraint redues the omplexity toO(T [2N � 1℄H) whih is a savings of a fator (N=2)H . Approximations to Baum-Welsh updating [7, 8℄ might be used to further aelerate training, although wedid not explore suh approximations in the present work.3 ExperimentsWe perform two sets of experiments. First, we ompare our miofhmm to onven-tional iohmms and iofhmms on the detetion of long-term dependenies. Thetasks involve a nondeterministi mapping from input sequenes to output se-quenes. Seond, we ompare the generalization performane of our miofhmmto the lstm reurrent neural network. We use a lassi�ation task in whih themodel must produe an output indiating lass membership following the entireinput sequene. Eah result we present is the average of twenty repliations of amodel, exluding repliations that yielded loal optima (as determined by a val-idation set). In all experiments, the hmm onditional distributions are initializedrandomly.3.1 Comparing the MIOFHMM, IOFHMM, and IOHMMWe begin with a study of learning long-term dependenies using a simple lathtask that has been used to test various approahes to this problem, e.g., [6, 11℄.The essene of the task is that a sequene of inputs are presented, beginningwith one of two symbols, A or B, and after a variable number of time steps, the



model must output a orresponding symbol|U if the original input was A, orV if the original input was B. Thus, the task requires memorizing the originalinput. The end of the input sequene is marked by the symbol E, and in theintervening time steps, symbols are hosen at random from fC;Dg. Exept forthe �nal output symbol, any output from fX;Y;Zg is allowed. We vary T , thenumber of time steps intervening between the �rst input and the �nal output. Asample input sequene for T = 6 is A{C{C{D{D{C{E, and an allowed outputsequene for this input is Y{Z{X{Y{Z{Y{U. Five hundred sequenes weregenerated for training and for validation.We ompared the miofhmm against the iohmm and the iofhmm. The iohmmis given 5 hidden states, and the iofhmm and miofhmm are given 2 omponentswith 5 hidden states eah. (We also tested a version of the miofhmm with a singleomponent|essentially an miohmm|and the performane was omparable tothat of the miofhmm.) For eah simulation, we reord the number of updatesrequired for the model to produe the orret output on the �nal time step forall examples in the the validation set. If a model does not proess the validationset orretly within reasonable number of updates (multiple standard deviationsabove the mean), we treat the run as having beome stuk in a loal optimum.We report the mean number of update required for learning and the frequenyof beoming stuk in loal optima.Figure 1 shows the number of up-dates required to train the three mod-els, as a funtion of the sequenelength T . Experiments with the io-hmm and iofhmm with T > 5 wereterminated due to lak of CPU y-les. The training time for the iohmmand iofhmm appears to sale expo-nentially with the sequene length forthe iohmm and iofhmm, onsistentwith the theoretial results in [4℄, buttraining time for the miofhmm is at.The iohmm and iofhmm also yieldedmany loal optima: For T = 5, theiohmm and iofhmm disovered loal
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MIOFHMMFig. 1: Number of updates required to learnthe lath task for three arhitetures, as afuntion of the sequene length (the numberof time steps over whih an input elementmust be remembered).optima on 35% and 85% of training runs, respetively, whereas the miofhmmyielded no loal optima. The miofhmm learly outperforms onventional hmmmodels on tasks involving long-term temporal dependenies. The key featureneessary for the suess of the miofhmm is the onstraint that the state om-ponents behave as memory, whih is absent from the otherwise idential iofhmm.In a seond study, we used another task that has previously been exploredin the neural net ommunity [11℄. The task involves disovering a lassi�ationrule for input sequenes that depends on the temporal order of events. Eahsequene begins with the start symbol S and terminates with the end symbol E.Embedded in eah sequene are two ritial symbols hosen with replaement



from fA;Bg. All other input symbols are random, hosen with replaement fromfC;D;F;Gg. The input alphabet thus onsists of eight symbols|two start sym-bols, two ritial symbols, and four random symbols. A sample input sequene isS{C{A{G{B{F{E. The lassi�ation of the sequene depends on the identityand order of the two ritial symbols: sequenes ontaining an A followed by aB are assigned to lass 1, a B followed by an A to lass 2, an A followed by anA to lass 3, and a B followed by a B to lass 4. On reeiving the �nal input, thetask involved outputting the lass label; prior to this input, the task requiredoutputting a speial \no lass" label.We ompared the iofhmm to the miofhmm. The models had two state om-ponents, eah having two memory states. We trained the models with 500 exam-ples, and used a validation set of 500 further examples to determine when themodel had learned the task. The iofhmm was never able to learn the task to ariterion of 0 lassi�ation errors. Although the miofhmm ran into loal optimaon 65% of trials, it needed only 162 model-parameter updates on average to learnon the remaining 35%. (The loal optima obtained by the miofhmm in this andother experiments is atually a form of over�tting: the model performs very wellon the training set, but not on the validation set. But we all this a loal opti-mum nonetheless beause there is a solution for whih the model would performbetter on training and validation set.) Regardless, the miofhmm an sueed ona diÆult sequene-ordering task where the iofhmm fails, due to the onstraintimposed on the miofhmm that it implement a lath-and-hold memory.To summarize our two experiments, the lath-and-hold memory onstraintimposes a strong indutive bias on the miofhmm, whih allows it to learn moreeÆiently and reliably than models suh as the iofhmm and iohmm whih do notexploit this onstraint. Of ourse, the bene�t extends only to tasks for whih thisbias is appropriate|tasks involving storing and remembering sequene elementsand their ordering.3.2 Comparison of MIOFHMMs and LSTMThe experiments in this setion explore the generalization apabilities of themiofhmm as ompared to those of lstm [11℄, the neural network model witha lath-and-hold memory onstraint. We onsider a generalization task that ispartiularly diÆult for mahine learning systems, and for whih no guaran-tees of good generalization are possible|where the distributions from whih thetraining and test examples are drawn di�er from one another.In these experiments, we study a variation of the lath task. The input at eahtime onsists of two real-valued elements, a value and a marker, both in [0,1℄.The marker having value 1.0 indiates that the urrent value is to be stored, andthe marker having value 0.0 indiates that the previously stored value should beretrieved and outputted; a marker value of 0.5 indiates \no ation".Beause the miofhmm is intrinsially disrete, input values were quantizedinto one of E equal width intervals in [0,1℄. For example, with E = 10, theintervals were [0,.1℄, [.1,.2℄, et. Eah interval orresponded to a unique inputvalue, whih was rossed with the three distint markers for a total of 3E input



symbols. The output onsisted of E symbols. The lstm, in ontrast, requiredonly two ontinuous inputs and one ontinuous output. Its output was judgedto be orret if it lay in the orret interval. Although the two arhitetures arequite di�erent, it is not lear whether one has an advantage over the other onthis task. The miofhmm bene�ts from the fat that it reeives inputs that arequantized in a task-appropriate manner, whereas the lstm bene�ts from thefat that its input has a ompositional struture whih is task appropriate.In a �rst experiment, we trained the models on sequenes with lengths be-tween 2 and 10, sampled uniformly, with E = 10 intervals, and with the valueto be stored always the �rst element of the sequene. Both models were suppliedwith 1000 training examples and 1000 validation examples. The models weretested on 1000 generalization examples for various lengths between 10 and 1000.Thus, the hallenge was to extrapolate to longer sequenes, and hene, to forma memory that ould persist over long time intervals.For this experiment, lstm was provided with two memory ells. Weights inthe lstm were initialized randomly from [�:1; :1℄, with an initial bias of -1.0 oneah input gate. A learning rate of 0.1 was used. Following eah sequene, theweights were updated and the network was reset. The miofhmm utilized onestate omponent with 10 memory states. For both models, training ontinueduntil all examples in the validation set were lassi�ed orretly (i.e., in the orretinterval); if this did not our within a reasonable amount of time, then thetraining run was onsidered to have beome stuk in a loal optimum.lstm learned the task eÆientlyand reliably: training took was 36 se-onds of CPU time on a 400 MHzPC (orresponding to 130 trainingepohs), and never enountered loaloptima. In ontrast, the miofhmm re-quired 77 minutes of CPU time (15updates), and beame stuk in loalmaxima on 47% of runs. In testing,however, the miofhmm outshone thelstm. Figure 2 shows generalizationerror on test sequenes with lengthsranging from 10 to 1000 elements. Thetest sequene length an be extended
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Fig. 2: Generalization error of the lstmand the miofhmm on a lath task with testsequenes longer than the longest trainingsequene.to 1000 without any a�et on performane for the miofhmm, whereas the errorrate inreases rapidly for the lstm for sequenes having lengths greater than 30.In a seond experiment, we simpli�ed the lath task by presenting sequeneswhose element to be stored had only E = 2 disriminable values, but made thetask more diÆult in that the value to be stored ould our on any of the �rst5 sequene elements. Sequenes ranged in length from 5 to 20. As in the �rstexperiment, a marker input of 1.0 was a signal to store an input, and a markerinput of 0.0 was a signal to retrieve the stored value. However, we modi�ed thetask by replaing the neutral marker value of 0.5 with values ranging from 0.025



to 0.975. In the training set, the neutral marker value was randomly hosen froma uniform distribution over 39 disrete values evenly spaed in [0.025, 0.975℄.In the test set, the neutral marker value was randomly hosen from a reti�ed,disretized Gaussian distribution over the 39 disrete values. The variane of theGaussian was hosen based on a parameter a, suh that with 99% probabilitythe a largest values will be hosen. Consequently, as a is dereased, more markervalues in the sequene will beome onfused with the store (1.0) markers.As in the �rst experiment, lstmtraining was faster and more reliable:lstm required 7.75 minutes on av-erage to train (976 epohs), whereasthe miofhmm required 19 hours (50updates). lstm never enountered lo-al optima, whereas miofhmm didon 15% of trials. However, in termsof generalization performane, mio-fhmm one again beat out lstm. Fig-ure 3 shows perentage error on a testset as a funtion of the noise parame-ter a. Even for large values of a, mio- 0
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Fig. 3: Generalization error of the lstmand the miofhmm on a lath task with in-reased noise.fhmm produes fewer errors than lstm, but as a is dereased, lstm errorsinrease dramatially. For small a, the neutral marker was more likely to be avalue lose to that of the store marker, and onsequently, ated as a lure to on-fuse lstm. miofhmm bene�ts from the fat that the marker 1.0 and the marker0.975 are two di�erent symbols, and the similarity struture of the numerialvalues is therefore irrelevant to performane.To summarize these two experiments, the disrete nature of the miofhmm al-lows it to reliably hold information for longer periods of time than the ontinuouslstm, and also prevents the miofhmm from beoming onfused by noise, evennoise whose statistis in the training and test sets are quite di�erent. Althoughthe two experimental tasks we presented are somewhat ontrived, they empha-size that the disrete nature of the miohmm an be a virtue that distinguishesfrom any ontinuous reurrent neural network model.4 ConlusionsIn this paper, we have introdued a novel arhiteture for lassifying input se-quenes and for mapping input sequenes to output sequenes, the miofhmm.The miofhmmombines two of the virtues of hidden Markov models|the expliitprobabilisti framework and the powerful Baum-Welsh training proedure|witha form of indutive bias found to be valuable in reurrent neural network mod-els suh as lstm. The bias fores the miofhmm to behave as a lath-and-storememory. We explored four tasks that involved disovering key elements in aninput sequene whose detetion or temporal order was ritial to performane.The miofhmm performed well on all these tasks. In ontrast, variants of the ar-
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